# The Structure of the Intermetallic Phase $\alpha^{\prime}($ VAl $)$ 

By P. J. Brown<br>Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 22 April 1959)


#### Abstract

The structure of the monoclinic $\alpha^{\prime}$-phase in the vanadium-aluminium system has been determined and refined. This phase has the ideal composition $\mathrm{V}_{7} \mathrm{Al}_{45}$ and is structurally related to both the $\alpha$ and $\beta$ vanadium-aluminium phases. A description of the structure is given, and the interatomic distances are discussed and compared with those found in the other two phases.


## 1. Introduction

A recent investigation of the vanadium-aluminium alloy system (Bailey, Carlson \& Smith, 1958) has shown that there exist five intermediate phases, $\alpha-\mathrm{VAl}_{10}$, $\alpha^{\prime}-\mathrm{VAl}_{7}, \beta-\mathrm{V}_{4} \mathrm{Al}_{23}, \gamma-\mathrm{VAl}_{3}$ and $\delta-\mathrm{V}_{5} \mathrm{Al}_{8}$. The $\delta$ phase has the $\gamma$-brass structure and that of the $\gamma$-phase is isomorphous with $\mathrm{TiAl}_{3}$ (Brauer, 1943). The structure of the $\beta$-phase has been determined by Smith \& Ray (1957) and independently by the present author (Brown, 1957a). The structure of the $\alpha$-phase has been shown to be closely similar to that of $\varepsilon(\mathrm{MgCrAl})$ (Brown, 1957b).
The three phases in this system which are most rich in aluminium belong to the group of complex alu-minium-rich alloys in which considerable interest has centred in recent years (Raynor, 1949; Taylor, 1954); and the two whose structures were already known had shown some interesting systematic trends in the orientation of the abnormally short V-Al bonds (Brown, 1957a). The analysis of the structure of the phase $\mathrm{VAl}_{7}$ was undertaken both to complete the structural investigation of the phase diagram and to provide further evidence to test the trends noticed previously.

## 2. Material

The crystals used in the analysis were extracted electrolytically from an alloy containing $2.5 \%$ weight vanadium. The materials used for its preparation were a vanadium-aluminium master alloy containing about $20 \%$ weight vanadium which was kindly made up by the Aluminium Research Laboratories, Banbury, and 'super-purity' aluminium supplied by the British Aluminium Company. The alloy was cooled from 800 ${ }^{\circ} \mathrm{C}$. to $675{ }^{\circ} \mathrm{C}$. at the rate of $1{ }^{\circ} \mathrm{C} . / \mathrm{min}$. and then rapidly quenched from this temperature. The extracted crystals were mainly plates of the $\alpha^{\prime}$ phase but a few $\alpha$ crystals were also found. The $\alpha^{\prime}$ crystals were often multiply twinned and X-ray examination showed that the twin axis was normal to (100), the plane of the plates.

## 3. The unit cell

Laue, oscillation and Weissenberg photographs taken of the $\alpha^{\prime}$ crystals showed that the unit cell was monoclinic and enabled approximate values of the lattice parameters to be calculated. More precise values were determined using the $\theta$-method described by Weisz, Cochran \& Cole (1948); the film strip used by these workers to detect the X -rays was replaced in the present case by a Geiger counter used in conjunction with a linear ratemeter. The values found were:

$$
\begin{aligned}
& a=25 \cdot 604 \pm 0.014 \AA \\
& b=7 \cdot 6213 \pm 0.0018 \\
& c=11 \cdot 081 \pm 0.012 \\
& \beta=128^{\circ} 55^{\prime} \pm 2^{\prime} .
\end{aligned}
$$

The volume of the unit cell is $1680 \pm 2 \AA^{3}$ and the density of the crystals, measured by a flotation method, is $3 \cdot 10 \pm 0.03 \mathrm{~g} . \mathrm{cm} .^{-3}$. The mass of the contents of the unit cell is therefore $3130 \pm 30$ a.m.u.

A chemical analysis of 35 mg . of the crystals carried out by Messrs Johnson Matthey \& Co. Ltd. gave $22.0 \%$ weight vanadium and $77.9 \%$ weight aluminium or one vanadium atom to 6.7 aluminium atoms. The mass of the unit $\mathrm{VAl}_{6.7}$ is 232 a.m.u.; there are therefore 14 vanadium atoms per cell ( 714 a.m.u.), the remaining 2416 a.m.u. correspond approximately to 90 aluminium atoms.

## 4. The space group

The Laue symmetry of the crystals as shown by X-ray photographs is $2 / m$ and the systematically absent reflexions show that the unit cell is C-face centred. The possible space groups are therefore $C 2, C m$ and $C 2 / m$. Of these the first has a centre of symmetry in the [010] projection. The second has no centre of symmetry in either the [010] or [001] projections; only in the space group $C 2 / m$ are both of these projections centrosymmetric.

A Wilson statistical test was applied to the intensities measured for both the [010] and [001] zones; the results obtained are shown in Fig. 1. The points for both projections lie on or above the curve for a


Fig. 1. Tests for centrosymmetry of the [001] and [010] projections of $\alpha^{\prime}(\mathrm{V}-\mathrm{Al})$.
centric distribution. The holosymmetric space group $C 2 / m$ was therefore chosen, and during the refinement of the structure no evidence was found to contradict this choice.

## 5. Collection of intensities

The crystal used for the collection of intensity data was a small block, cut from one of the twinned plates so as to contain one component only, approximately cubic in shape and with edges about 0.05 mm . in length. For this size of crystal the correction of the intensities for absorption of Mo $K \alpha$ radiation can be assumed to be a function of $\sin \theta / \lambda$ only, within the accuracy of the measurements.

Reflexions from this crystal of the form $h 0 l$ were recorded on a zero-layer, normal-beam Weissenberg photograph with Mo $K \alpha$ radiation. A multiple-film technique was used, and intensities out to $\sin \theta / \lambda=1 \cdot 0$ were measured by visual comparison with an intensity scale made using a reflexion from the same crystal. About 400 non-zero intensities were included in this range; they were corrected for the Lorentz and polarization effects. Absorption and the effect of increasing resolution of the $\alpha_{1} \alpha_{2}$ doublet were taken into account by the method of scaling. Initially the possibility of extinction was ignored but in the final stages of the refinement it was found necessary to make a rough correction for it.

Reflexions of the form $h k 0$ were collected in a similar way; finally the $h k \mathrm{l}$ and $h k 2$ reflexions were recorded on two equi-inclination Weissenberg photographs and their intensities measured since it was found that these data were necessary to complete the refinement of the structure.

## 6. The [001] Patterson projection

The [001] Patterson projection was calculated and is shown in Fig. 2. The weight of the origin peak is 534


Fig. 2. [001] projection of the Patterson function.
and the structure is to contain 14 vanadium and approximately 90 aluminium atoms; therefore if the weight of the peak corresponding to an $\mathrm{Al}-\mathrm{Al}$ vector is $\alpha^{2}$ and that of a $\mathrm{V}-\mathrm{V}$ vector is $4 \alpha^{2}$ then, assuming that there is no overlap of atoms in projection, $\alpha^{2}=3 \cdot 7$. The $y$-axis of the unit cell is only $7 \cdot 6 \AA$ in length so that in the space group $C 2 / m$ there are mirror planes perpendicular to $y$ at distances $3 \cdot 8 \AA$ apart. Atoms in general positions in the structure must lie at least $1 \cdot 3 \AA$ from these planes. The peak $A$ in the Patterson projection at distance $2 \cdot 7 \AA$ from the origin along the $y$ axis is the sum of peaks corresponding to vectors between each atom in a general position and the atom to which it is related by reflexion in the mirror-plane. The weight of this peak is 158 which leads to the conclusion that either there are about 80 aluminium atoms in general positions and all the vanadium atoms are in special positions, or else there are 8 vanadium atoms and about 48 aluminium atoms in general positions. As there are only about 90 aluminium atoms in the structure the second combination seemed more reasonable and it was decided to proceed on the assumption that the vanadium atoms occupy one set of $2(a)$, one set of $4(i)$, and one set of $8(j)$ positions, and that the aluminium atoms occupy at least 6 sets of $8(j)$ and 8 sets of $4(i)$ positions.

## 7. The [010] Patterson projection

The similarity between the $b$ axis of $\alpha^{\prime}(V-A l)$ and the $a$ axis of $\beta(\mathrm{V}-\mathrm{Al})$, each of which is about $7 \cdot 6 \AA$ in length and is intersected by mirror planes, suggested that the vanadium atoms in $8(j)$ positions might be surrounded by a complex such as that illustrated in Fig. 3(a) which is similar to that around the $V_{2}$ atoms in the $\beta$-structure. Such a complex when viewed in projection down the [010] axis (Fig. $3(b)$ ) will show a peak corresponding to the superposition of one aluminium and two vanadium atoms, surrounded by a ring of ten approximately evenly spaced peaks at a
distance of about $2 \cdot 2 \AA$ from the central peak; alternate peaks correspond to single and double aluminium atoms.


Fig. 3. Coordination polyhedra in the structure of $\alpha^{\prime}(\mathrm{V}-\mathrm{Al})$.
The [010] Patterson projection is shown in Fig. 4. The highest peak apart from the origin peak is that marked $A$ and was associated with the vector between two of the complexes referred to in the previous paragraph. The ten-fold rings surrounding both this peak and the origin peak have been outlined. The other vanadium atoms in the structure lie on the mirror plane and evidence from the structures of both $\alpha$ and $\beta \mathrm{V}-\mathrm{Al}$ suggests that these vanadium atoms will be 12 -coordinated by aluminium atoms at the corners of a nearly regular icosahedron. If this is so the icosahedra must be orientated so that one of their mirror planes lies in the mirror plane of the structure and when viewed in projection down [010] it will appear as in Fig. 3(c). The vector V $-X$ in this projection can be
associated with either of the peaks $B$ and $C$ in the [010] Patterson projection. The peak $C$ has twice the weight of peak $B$ and was therefore associated with


Fig. 4. [010] projection of the Patterson function.
the vanadium atoms in $4(i)$ positions, the weaker peaks $B$ being associated with the atoms in $2(a)$ positions, and in this way the orientation of the icosahedra around these vanadium atoms was determined. Using this information it was then possible to postulate a structure which was in fairly good agreement with both [010] and [001] Patterson projections. The positions of atoms in this structure are given in Table I; $x$ and $z$ coordinates for the atoms $\mathrm{Al}_{8}, \mathrm{Al}_{9}, \mathrm{Al}_{10}$ and $\mathrm{Al}_{17}$ could not be fixed with any certainty from the Patterson projections.

## 8. Refinement of the [010] projection

The atoms of the structure proposed in the previous section are resolved in the [010] projection except for

Table 1. Atomic coordinates in the structure of $\alpha^{\prime} \mathrm{V}-\mathrm{Al}$

| Type of atom |  |  |
| :---: | :---: | :---: |
| $2 \mathrm{~V}_{0}$ | in $2(a)$ | $(0,0,0)$ |
| $4 \mathrm{~V}_{1}$ | in $4(i)$ | $\left(x_{1}, 0, z_{1}\right)$ |
| $8 \mathrm{~V}_{2}$ | in $8(j)$ | $\left(x_{2}, y_{2}, z_{2}\right)$ |
| $2 \mathrm{Al}_{0}$ | in $2(d)$ | $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ |
| $4 \mathrm{Al}_{3}$ | in $4(i)$ | $\left(x_{3}, 0, z_{3}\right)$ |
| $4 \mathrm{Al}_{4}$ | in $4(i)$ | ( $x_{4}, 0, z_{4}$ ) |
| $4 \mathrm{Al}_{5}$ | in 4 (i) | ( $x_{5}, 0, z_{5}$ ) |
| $4 \mathrm{Al}_{6}$ | in $4(i)$ | $\left(x_{6}, 0, z_{6}\right)$ |
| $4 \mathrm{Al}_{7}$ | in $4(i)$ | ( $x_{7}, 0, z_{7}$ ) |
| $4 \mathrm{Al}_{8}$ | in $4(i)$ | ( $x_{\mathrm{y}}, 0, z_{\mathrm{k}}$ ) |
| $4 \mathrm{Al}_{9}$ | in $4(i)$ | ( $x_{8}, 0, z_{9}$ ) |
| $4 \mathrm{Al}_{10}$ | in 4 (i) | $\left(x_{10}, 0, z_{10}\right)$ |
| $8 \mathrm{Al}_{11}$ | in $8(j)$ | ( $x_{11}, y_{11}, z_{11}$ ) |
| $8 \mathrm{Al}_{12}$ | in $8(j)$ | $\left(x_{12}, y_{12}, z_{12}\right)$ |
| $8 \mathrm{Al}_{13}$ | in $8(j)$ | ( $x_{13}, y_{13}, z_{13}$ ) |
| $8 \mathrm{Al}_{14}$ | in $8(j)$ | ( $x_{14}, y_{14}, z_{14}$ ) |
| $8 \mathrm{Al}_{15}$ | in $8(j)$ | $\left(x_{15}, y_{15}, z_{15}\right)$ |
| $8 \mathrm{Al}_{16}$ | in $8(j)$ | ( $x_{16}, y_{16}, z_{16}$ ) |
| $8 \mathrm{Al}_{17}$ | in $8(j)$ | $\left(x_{17}, y_{17}, z_{17}\right)$ |

Initial coordinates

| $0 \cdot 25$ | $0 \cdot 312$ | 0.25 | $0 \cdot 2514 \pm 0.0003$ | $0 \cdot 3270 \pm 0 \cdot 0005$ | $0 \cdot 2628 \pm 0.0007$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \cdot 08$ |  | 0.74 | $0.0857 \pm 0.0002$ |  | $0.7530 \pm 0.0005$ |
| 0.61 |  | $0 \cdot 00$ | $0 \cdot 6164 \pm 0.0005$ |  | $0.0030 \pm 0.0012$ |
| $0 \cdot 28$ |  | $0 \cdot 06$ | $0 \cdot 2935 \pm 0 \cdot 0005$ |  | $0.0760 \pm 0.0012$ |
| $0 \cdot 38$ |  | 0.38 | $0 \cdot 3755 \pm 0 \cdot 0005$ |  | $0.3870 \pm 0.0012$ |
| 0.53 |  | $0 \cdot 27$ | $0 \cdot 5205 \pm 0.0005$ |  | $0 \cdot 2840 \pm 0.0012$ |
| 0.08 |  | $0 \cdot 74$ | $0.0815 \pm 0.0008$ |  | $0 \cdot 7200 \pm 0.0020$ |
|  |  |  | $0 \cdot 1287 \pm 0 \cdot 0005$ |  | $0 \cdot 1435 \pm 0 \cdot 0012$ |
|  |  |  | $0.0905 \pm 0.0005$ |  | $0.3370 \pm 0.0012$ |
|  |  |  | $0.2255 \pm 0.0005$ |  | $0 \cdot 4600 \pm 0.0012$ |
| $0 \cdot 17$ | $0 \cdot 188$ | 0.00 | $0 \cdot 1810 \pm 0.0003$ | $0 \cdot 1830 \pm 0 \cdot 0008$ | $0.0090 \pm 0.0007$ |
| $0 \cdot 06$ | 0.312 | $0 \cdot 12$ | $0.0680 \pm 0.0003$ | $0 \cdot 3180 \pm 0.0008$ | $0 \cdot 1475 \pm 0.0007$ |
| 0.96 | $0 \cdot 188$ | $0 \cdot 13$ | $0.9644 \pm 0.0003$ | $0 \cdot 1800 \pm 0 \cdot 0008$ | $0 \cdot 1365 \pm 0.0007$ |
| $0 \cdot 30$ | 0.312 | 0.23 | $0 \cdot 3098 \pm 0.0003$ | $0.3180 \pm 0.0008$ | $0 \cdot 2415 \pm 0.0007$ |
| $0 \cdot 05$ | $0 \cdot 188$ | $0 \cdot 47$ | $0.0452 \pm 0.0003$ | $0 \cdot 1940 \pm 0.0008$ | $0.4670 \pm 0.0007$ |
| $0 \cdot 16$ | 0.312 | $0 \cdot 50$ | $0 \cdot 1648 \pm 0.0003$ | $0.3070 \pm 0.0008$ | $0.4750 \pm 0.0007$ |
|  | $0 \cdot 312$ |  | $0 \cdot 2058 \pm 0 \cdot 0003$ | $0 \cdot 3140 \pm 0 \cdot 0008$ | $0 \cdot 2780 \pm 0.0007$ |



Fig. 5. Final $F_{o}$ and $F_{o}-F_{c}$ [010] Fourier projections; contours are at equal arbitrary intervals, the interval in the $F_{o}-F_{c}$ synthesis is one fifth of that in the $F_{o}$. Negative contours are shown as broken lines. Squares mark the atomic sites.
the $\mathrm{V}_{2}$ and $\mathrm{Al}_{7}$ atoms which lie on top of one another. Using the coordinates determined from the Patterson projections, the structure factors out to $\sin \theta / \lambda=0.5$ were calculated and compared with the observed structure amplitudes; a fair agreement was found. After scaling $F_{o}$ to $F_{c}$ in regions of $\sin \theta / \lambda$ the agreement index $R$ was 0.45 . Both the $F_{o}$ and the $F_{o}-F_{c}$ syntheses were now calculated omitting those terms whose signs were particularly uncertain. The atoms $\mathrm{Al}_{8}, \mathrm{Al}_{9}, \mathrm{Al}_{10}$ and $\mathrm{Al}_{17}$ appeared as positive peaks on these syntheses in positions very near to those expected on geometrical grounds; coordinates were assigned to these atoms as follows:

$$
\begin{array}{ll}
x_{8}=0.120 & z_{8}=0.147 \\
x_{9}=0.072 & z_{9}=0.270 \\
x_{10}=0.226 & z_{10}=0.420 \\
x_{17}=0.208 & z_{17}=0.270
\end{array}
$$

and a few small changes were made in the coordinates of the other atoms. The structure factors calculated using these coordinates were in considerably better agreement than formerly, and after scaling $R$ was 0.33 which was taken to show that the structure was now substantially correct.

The $x$ and $z$ coordinates were refined in the [010] projection using $F_{o}-F_{c}$ syntheses. The final $R$-factor over the 380 measured reflexions was $0 \cdot 102$. The final $F_{o}$ and $F_{o}-F_{c}$ syntheses are shown in Fig. 5; the final coordinates are given in Table 1.

## 9. Refinement of the [001] projection

The $y$-coordinates of the eight sets of atoms in general positions have to be determined from the [001] pro-


Fig. 6. Final $F_{o}$ and $F_{o}-F_{c}$ [001] Fourier projections; contours are at equal arbitrary intervals, the interval in the $F_{o}-F_{c}$ synthesis is one fifth of that in the $F_{o}$. Negative contours are shown as broken lines. Squares mark the atomic sites.
jection. These atoms are, however, not very well resolved in this projection and occur in four groups of two, $\mathrm{V}_{2}, \mathrm{Al}_{12} ; \mathrm{Al}_{11}, \mathrm{Al}_{14} ; \mathrm{Al}_{13}, \mathrm{Al}_{15} ; \mathrm{Al}_{16}, \mathrm{Al}_{17}$ (see Fig. 6). The $y$ coordinates of these atoms cannot therefore be determined very accurately from this projection using the zero layer data only. A few cycles of refinement were, however, carried out using $F_{o}-F_{c}$ syntheses and the $R$-factor was reduced from 0.34 to $0 \cdot 154$. Further refinement of the coordinates in this projection was carried out using data from two nonzero layers.

In space group $C / 2 m$ the structure factors are of the form

$$
\begin{aligned}
F(h k l)= & \sum_{n} f_{n} \cos 2 \pi(h x+l z) \cos 2 \pi k y \\
= & \sum_{n} f_{n}\{\cos 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z-\sin 2 \pi h x \\
& \times \cos 2 \pi k y \sin 2 \pi l z\}
\end{aligned}
$$

The contribution of a particular atom to the reflexion ( $h k l$ ) is:

$$
\begin{aligned}
& f_{n}(\cos 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z \\
& -\sin 2 \pi h x \cos 2 \pi k y \sin 2 \pi l z)
\end{aligned}
$$

and the contribution of the same atom to the reflexion ( $\hbar k l$ ) is

$$
\begin{aligned}
& f_{n}(\cos 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z \\
&+\sin 2 \pi h x \cos 2 \pi k y \sin 2 \pi l z)
\end{aligned}
$$

its contribution to the sum $F(h k l)+F(\hbar k l)$ is therefore $2 f_{n}(\cos 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z)$. The Fourier synthesis

$$
\Psi(x y)=\sum_{h} \sum_{k}[F(h k l)+F(\hbar k l)] \cos 2 \pi(h x+k y)
$$

for a constant value of $l$ will have peaks at the atomic positions of the [001] projection of weight proportional to $f_{n} \cos 2 \pi l z$. The values of $\cos 2 \pi l z$ for the eight

Table 2. Contributions of the atoms in general positions to the first and second layers of the [001] projection

| Atom | lst layer | 2nd layer |
| :---: | :---: | ---: |
| $\mathrm{V}_{2}$ | 0.031 | -0.995 |
| $\mathrm{Al}_{11}$ | 0.998 | 0.996 |
| $\mathrm{Al}_{12}$ | 0.588 | -0.279 |
| $\mathrm{Al}_{13}$ | 0.661 | -0.125 |
| $\mathrm{Al}_{14}$ | 0.063 | -0.992 |
| $\mathrm{Al}_{15}$ | -0.976 | 0.905 |
| $\mathrm{Al}_{16}$ | -0.988 | 0.951 |
| $\mathrm{Al}_{17}$ | -0.187 | -0.930 |



Fig. 7. Schematic diagram showing the structural units of $\alpha^{\prime}(\mathrm{V}-\mathrm{Al})$. The numbers refer to those of the Al atoms in Table 1 .
atoms in general positions when $l$ is equal to 1 and to 2 are listed in Table 2. It can be seen that $\mathrm{V}_{2}, \mathrm{Al}_{14}$ and $\mathrm{Al}_{17}$ make only a small contribution to the synthesis calculated using data from the first layer, and that $\mathrm{Al}_{12}$ and $\mathrm{Al}_{13}$ make only a small contribution to that calculated using data from the second layer. Thus by using $F_{o}-F_{c}$ syntheses for the zero, first and second layers of the [001] projection it was possible to refine all the $y$-coordinates. The final coordinates are given in Table 1 and the agreement between $F_{o}$ and $F_{c}$ was as follows:

Zero layer 100 reflexions measured $R=0.096$
lst layer 230 reflexions measured $R=0.094$
2nd layer 200 reflexions measured $R=0.095$
The final $F_{o}$ and $F_{o}-F_{c}$ syntheses for the zero layer are shown in Fig. 6. The standard deviations of the atomic coordinates have been calculated from the final $F_{o}-F_{c}$ syntheses in the manner suggested by Lipson \& Cochran (1953). Tabulated values of $F_{o}$ and $F_{c}$ are available.

## 10. Description of the structure

The structure of $\alpha^{\prime} \mathrm{V}$-Al is most readily described in terms of the coordination polyhedra around the vanadium atoms. The polyhedra around the $\mathrm{V}_{0}$ atoms are nearly regular icosahedra, and those around the $\mathrm{V}_{1}$ atoms are slightly distorted icosahedra; each pair of $\mathrm{V}_{2}$ atoms which are in contact form the nucleus of the two interpenetrating icosahedra shown in Fig. 3(a). Each of these complexes shares one pair of adjacent faces with a pair of faces of one of the $V_{1}$ icosahedra and thus form the large groups of atoms indicated schematically in Fig. 7 in their appropriate orientations. The atoms $\mathrm{Al}_{11}$ are shared between the two groups which have been drawn, and each of those groups shares an $\mathrm{Al}_{8}$ and an $\mathrm{Al}_{13}$ atom, with one of the icosahedra around the $V_{0}$ atoms which are also shown. The structural unit thus formed extends in a thick layer by operation of the centres of symmetry at the positions of $V_{0}$ and $\mathrm{Al}_{0}$. This causes adjacent units to share the two faces which are shaded in Fig. 6. These thick layers are stacked one above the other sharing the atoms $\mathrm{Al}_{7}$.

## 11. The interatomic distances

Table 3 is a list of interatomic distances with their standard deviations. The mean $\mathrm{Al}-\mathrm{Al}$ distance is 2.85 $\AA$ which is about normal for this type of compound. The main interest lies in the $\mathrm{Al}-\mathrm{V}$ distances, a histogram of these distances suggests that they are divided into two groups the mean Al-V distance in the first group being $2 \cdot 56 \AA$ and the mean distance in the second being $2 \cdot 79 \AA$. The value $2 \cdot 56 \AA$ found for the first group is significantly shorter than the sum of the twelvecoordinated radii for vanadium and aluminium ( $2.77 \AA$ ) whereas the mean in the second group is not very

Table 3. Interatomic distances in the structure of $\alpha^{\prime} \mathrm{V}-\mathrm{Al}$

| Atom | Neighbours at distances given elsewhere in table | Other neighbours | Distance $(\AA)$ | Standard deviations ( $\AA$ ) |
| :---: | :---: | :---: | :---: | :---: |
| $V_{0}$ | - | $2 \mathrm{Al}_{8}$ | $2 \cdot 603$ | $0 \cdot 013$ |
|  |  | $2 \mathrm{Al}_{9}$ | $2 \cdot 898$ | 0.013 |
|  |  | $2 \mathrm{Al}_{12}$ | $2 \cdot 825$ | 0.007 |
|  |  | $4 \mathrm{Al}_{13}$ | $2 \cdot 596$ | 0.008 |
| $V_{1}$ | - | $1 \mathrm{Al}_{4}$ | $2 \cdot 874$ | 0.015 |
|  |  | $1 \mathrm{Al}_{5}$ | $2 \cdot 544$ | 0.015 |
|  |  | $1 \mathrm{Al}_{8}$ | $2 \cdot 525$ | 0.015 |
|  |  | $1 \mathrm{Al}_{10}$ | $2 \cdot 654$ | $0 \cdot 015$ |
|  |  | ${ }_{2} \mathrm{Al}_{11}$ | $2 \cdot 590$ | 0.014 |
|  |  | $2 \mathrm{Al}_{14}$ | $2 \cdot 936$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{16}$ | $2 \cdot 710$ | $0 \cdot 014$ |
|  |  | $2 \mathrm{Al}_{17}$ | $2 \cdot 713$ | 0.009 |
| $\mathrm{V}_{2}$ | - | $1 \mathrm{~V}_{2}$ | $2 \cdot 636$ | $0 \cdot 008$ |
|  |  | $1 \mathrm{Al}_{0}$ | 2.579 | $0 \cdot 005$ |
|  |  | $1 \mathrm{Al}_{3}$ | $2 \cdot 698$ | $0 \cdot 012$ |
|  |  | $1 \mathrm{Al}_{4}$ | $2 \cdot 739$ | 0.012 |
|  |  | $1 \mathrm{Al}_{5}$ | $2 \cdot 660$ | 0.012 |
|  |  | $1 \mathrm{Al}_{6}$ | $2 \cdot 809$ | 0.012 |
|  |  | $1 \mathrm{Al}_{7}$ | $2 \cdot 510$ | 0.005 |
|  |  | $1 \mathrm{Al}_{11}$ | $2 \cdot 544$ | 0.009 |
|  |  | $1 \mathrm{Al}_{13}$ | $2 \cdot 526$ | $0 \cdot 009$ |
|  |  | $1 \mathrm{Al}_{14}$ | $2 \cdot 855$ | 0.009 |
|  |  | $1 \mathrm{Al}_{15}$ | 2.828 | $0 \cdot 009$ |
|  |  | $1 \mathrm{Al}_{15}$ | $2 \cdot 810$ | $0 \cdot 009$ |
| $\mathrm{Al}_{0}$ | $4 \mathrm{~V}_{2}$ | $2 \mathrm{Al}_{5}$ | $2 \cdot 587$ | 0.013 |
|  |  | $2 \mathrm{Al}_{6}$ | $2 \cdot 755$ | 0.013 |
|  |  | $2 \mathrm{Al}_{15}$ | $2 \cdot 728$ | 0.007 |
| $\mathrm{Al}_{3}$ | $2 \mathrm{~V}_{2}$ | $1 \mathrm{Al}_{4}$ | $2 \cdot 939$ | 0.018 |
|  |  | $1 \mathrm{Al}_{6}$ | $2 \cdot 887$ | 0.018 |
|  |  | $\stackrel{\mathrm{Al}_{11}}{ }$ | $2 \cdot 904$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{12}$ | $2 \cdot 920$ | 0.014 |
|  |  | $2 \mathrm{Al}_{13}$ | $2 \cdot 929$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{17}$ | $2 \cdot 781$ | $0 \cdot 014$ |
| $\mathrm{Al}_{4}$ | $\begin{aligned} & 2 \mathrm{~V}_{2}, 1 \mathrm{Al}_{3} \\ & 1 \mathrm{~V}_{1} \end{aligned}$ | $1 \mathrm{Al}_{5}$ | 2.675 | 0.018 |
|  |  | $2 \mathrm{Al}_{11}$ | $2 \cdot 814$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{11}$ | $2 \cdot 845$ | 0.014 |
|  |  | $2 \mathrm{Al}_{14}$ | $2 \cdot 904$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{14}$ | $3 \cdot 092$ | 0.014 |
| $\mathrm{Al}_{5}$ |  | $1 \mathrm{Al}_{6}$ | 2.852 | $0 \cdot 018$ |
|  | $1 \mathrm{Al}_{0}, 1 \mathrm{Al}_{4}$ | $2 \mathrm{Al}_{14}$ | $2 \cdot 805$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{15}$ | $\underline{2.834}$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{16}$ | $2 \cdot 749$ | 0.014 |
| $\mathrm{Al}_{6}$ | $\begin{aligned} & 2 \mathrm{~V}_{2}, 1 \mathrm{Al}_{0} \\ & 1 \mathrm{Al}_{3}, \mathrm{IAI}_{5} \end{aligned}$ | $2 \mathrm{Al}_{12}$ | 2.830 2.778 | $0 \cdot 014$ |
|  |  | $2 \mathrm{Al}_{13}$ | $2 \cdot 778$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{15}$ | $2 \cdot 886$ | 0.009 |
|  |  | $2 \mathrm{Al}_{16}$ | $3 \cdot 229$ 2.898 | 0.014 0.019 |
| $\mathrm{Al}_{7}$ | $2 \mathrm{~V}_{2}$ | ${ }_{2}{ }_{2} \mathrm{Al}_{11}$ | $2 \cdot 898$ $2 \cdot 854$ | 0.019 0.019 |
|  |  | $2 \mathrm{Al}_{13}$ $2 \mathrm{Al}_{14}$ | $2 \cdot 854$ 2.886 | 0.019 0.019 |
|  |  | $2 \mathrm{Al}_{15}$ | $2 \cdot 760$ | 0.019 |
|  |  | $2 \mathrm{Al}_{15}$ | 2.919 | $0 \cdot 019$ |
| $\mathrm{Al}_{8}$ | $1 \mathrm{~V}_{0}, 1 \mathrm{~V}_{1}$ | $1 \mathrm{Al}_{9}$ | $2 \cdot 863$ | 0.018 |
|  |  | $1 \mathrm{Al}_{10}$ | $2 \cdot 734$ | 0.018 |
|  |  | $2 \mathrm{Al}_{11}$ | 2.911 | 0.014 |
|  |  | $2 \mathrm{Al}_{12}$ | $2 \cdot 894$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{13}$ | $2 \cdot 803$ | 0.014 |
|  |  | $2 \mathrm{Al}_{17}$ | $2 \cdot 851$ | $0 \cdot 009$ |
| $\mathrm{Al}_{9}$ | $1 \mathrm{~V}_{0}, \mathrm{l} \mathrm{Al}_{8}$ | $1 \mathrm{Al}_{10}$ | $2 \cdot 804$ | $0 \cdot 018$ |
|  |  | $2 \mathrm{Al}_{12}$ | $3 \cdot 014$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{13}$ | $2 \cdot 862$ | 0.014 |
|  |  | $2 \mathrm{Al}_{15}$ | $2 \cdot 777$ | 0.014 |
|  |  | $2 \mathrm{Al}_{16}$ | $2 \cdot 785$ | 0.009 |
| $\mathrm{Al}_{10}$ | $1 \mathrm{~V}_{1}, 1 \mathrm{Al}_{8}, 1 \mathrm{Al}_{9}$ | $2 \mathrm{Al}_{16}$ | $2 \cdot 83 \mathrm{~J}$ | 0.014 |
|  |  | $2 \mathrm{Al}_{16}$ | $2 \cdot 870$ | $0 \cdot 009$ |
|  |  | $2 \mathrm{Al}_{17}$ | $2 \cdot 662$ | 0.014 |
|  |  | $2 \mathrm{Al}_{17}$ | 2.960 | $0 \cdot 009$ |
| $\mathrm{Al}_{11}$ | $1 V_{1}, 1 V_{2}, 1 \mathrm{Al}_{3}$ | $1 \mathrm{Al}_{11}$ | $2 \cdot 788$ | 0.012 |
|  | $1 \mathrm{Al}_{4}, 1 \mathrm{Al}_{4}$ | $1 \mathrm{Al}_{13}$ | $2 \cdot 981$ | 0.011 |
|  | $1 \mathrm{Al}_{7}, 1 \mathrm{Al}_{8}$ | $1 \mathrm{Al}_{14}$ | $2 \cdot 926$ | 0.011 |

Table 3 (cont.)

| Atom | Neighbours at distances given elsewhere in table | Other neigh. bours | Distance ( $\AA$ ) | Standard deviations ( $\AA$ ) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Al}_{11}$ | - | $1 \mathrm{Al}_{14}$ | $2 \cdot 805$ | 0.010 |
|  |  | $1 \mathrm{Al}_{17}$ | $2 \cdot 810$ | 0.010 |
| $\mathrm{Al}_{12}$ | $\begin{aligned} & 1 \mathrm{~V}_{0}, 1 \mathrm{Al}_{3}, \\ & 1 \mathrm{Al}_{8}, 1 \mathrm{II}_{9} \end{aligned}$ | $1 \mathrm{Al}_{12}$ | 2.773 | 0.012 |
|  |  | $1 \mathrm{Al}_{12}$ | 2.907 | 0.016 |
|  |  | $1 \mathrm{Al}_{13}$ | $2 \cdot 783$ | 0.010 |
|  |  | $1 \mathrm{Al}_{13}$ | $2 \cdot 899$ | 0.010 |
|  |  | $1 \mathrm{Al}_{16}$ | $2 \cdot 823$ | 0.011 |
|  |  | $1 \mathrm{Al}_{17}$ | $2 \cdot 845$ | 0.011 |
| $\mathrm{Al}_{13}$ | $1 \mathrm{~V}_{0}, 1 \mathrm{~V}_{2}, 1 \mathrm{Al}_{3}$ | $1 \mathrm{Al}_{13}$ | $2 \cdot 742$ | $0 \cdot 012$ |
|  | $1 \mathrm{Al}_{6}, 1 \mathrm{Al}_{7}, 1 \mathrm{Al}_{8}$ | $1 \mathrm{Al}_{15}$ | $2 \cdot 854$ | 0.011 |
|  | $\begin{aligned} & \mathrm{lAl}_{9}, 1 A l_{11}, 1 A l_{12} \\ & 1 \mathrm{Al}_{12} \end{aligned}$ |  |  |  |
| $\mathrm{Al}_{14}$ | $1 \mathrm{~V}_{1}, 1 \mathrm{~V}_{2}, 1 \mathrm{Al}_{4}$ | $1 \mathrm{Al}_{14}$ | $2 \cdot 733$ | 0.012 |
|  | $1 \mathrm{Al}_{4}, 1 \mathrm{Al}_{5}, 1 \mathrm{Al}_{7}$ | $1 \mathrm{Al}_{15}$ | $3 \cdot 013$ | 0.011 |
|  | $1 \mathrm{Al}_{11}, 1 \mathrm{Al}_{11}$ | $1 \mathrm{Al}_{16}$ | 2.938 | $0 \cdot 010$ |
|  |  | $1 \mathrm{Al}_{17}$ | $2 \cdot 940$ | 0.011 |
| $\mathrm{Al}_{15}$ | $1 \mathrm{~V}_{2}, 1 \mathrm{~V}_{2}, 1 \mathrm{Al}_{0}$ | $1 \mathrm{Al}_{15}$ | $2 \cdot 956$ | $0 \cdot 012$ |
|  | $1 \mathrm{Al}_{5}, 1 \mathrm{Al}_{6}, 1 \mathrm{Al}_{7}$ | $1 \mathrm{Al}_{15}$ | $2 \cdot 833$ | 0.016 |
|  | $1 \mathrm{Al}_{7}, 1 \mathrm{Al}_{9}, 1 \mathrm{Al}_{13}$ | $1 \mathrm{Al}_{16}$ | $3 \cdot 128$ | $0 \cdot 010$ |
|  | $1 \mathrm{Al}_{14}$ |  |  |  |
| $\mathrm{Al}_{16}$ | $\begin{aligned} & 1 \mathrm{~V}_{1}, 1 \mathrm{Al}_{5}, 1 \mathrm{Al}_{6} \\ & 1 \mathrm{Al}_{9}, 1 \mathrm{Al}_{10} \end{aligned}$ | $1 \mathrm{Al}_{16}$ | 2.941 2.960 | 0.012 |
|  |  | $1 \mathrm{Al}_{17}$ | $2 \cdot 960$ | 0.011 |
| $\begin{aligned} & \mathrm{Al}_{16} \\ & \mathrm{Al}_{17} \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~V}_{1}, \overline{\mathrm{~A}} 1_{3}, 1 \mathrm{Al}_{8} \\ & \mathrm{IAl}_{10}, 1 \mathrm{Al}_{10}, 1 \mathrm{Al}_{11} \\ & \mathrm{IAl}_{12}, \mathrm{IAl}_{14}, \mathrm{IAl} \\ & 1 \mathrm{Al}_{16} \end{aligned}$ | $1 \mathrm{Al}_{17}$ | $2 \cdot 807$ | $0 \cdot 010$ |
|  |  | $1 \mathrm{Al}_{17}$ | $2 \cdot 834$ | 0.012 |
|  |  |  |  |  |
|  |  |  |  |  |

different from this. These may be compared with the values 2.57 and $2.83 \AA$ found for the two crystallographically different $\mathrm{V}-\mathrm{Al}$ distances in $\alpha(\mathrm{V}-\mathrm{Al})$ (Brown, 1957a) and with the mean values 2.58 and $2 \cdot 80 \AA$ for the two similar groups of distances in $\beta(\mathrm{V}-\mathrm{Al})$ (Smith \& Ray, 1957). In all three compounds it is found that the short V-Al vectors are those which link the coordination polyhedra together. In almost all cases each aluminium atom which is in short contact with one vanadium atom is also in short contact with a second. In Table 4 are collected all the distances in the structures of $\alpha, \beta$ and $\alpha^{\prime}(\mathrm{V}-\mathrm{Al})$ between aluminium atoms which are in contact with just two vanadium atoms. The angle at the aluminium atom between the two $\mathrm{V}-\mathrm{Al}$ bonds is also given. Inspection of Table 3 shows that in all cases where the mean $\mathrm{Al}-\mathrm{V}$ distance belongs to the short group the angle between the bonds is close to $180^{\circ}$.

Table 4. Interatomic distances and interbond angles for aluminium atoms in contact with two vanadium atoms in vanadium-aluminium alloy phases

| Compound | $d_{1}$ | $d_{2}$ | Angle |
| :---: | :---: | :---: | :---: |
| $\alpha-\mathrm{VAl}$ | $2.57 \AA$ | $2.57 \AA$ | $169.8^{\circ}$ |
| $\alpha^{\prime}$-VAl | $2 \cdot 70$ | $2 \cdot 70$ | $58 \cdot 4$ |
|  | $2 \cdot 81$ | 2.81 | $56 \cdot 1$ |
|  | 2.51 | $2 \cdot 51$ | $165 \cdot 8$ |
|  | $2 \cdot 60$ | $2 \cdot 52$ | $175 \cdot 8$ |
|  | $2 \cdot 53$ | $2 \cdot 60$ | $171 \cdot 6$ |
|  | 2.94 | $2 \cdot 86$ | $91 \cdot 6$ |
|  | $2 \cdot 83$ | $2 \cdot 81$ | $92 \cdot 9$ |
| $\beta$-VAl | 2.53 | 2.53 | $170 \cdot 4$ |
|  | 2.59 | $2 \cdot 59$ | 168.9 |
|  | $2 \cdot 78$ | $2 \cdot 78$ | $57 \cdot 0$ |

Black (1955) has pointed out a tendency for the transition-metal to aluminium distance in this type of compound to increase with the number of transition metal neighbours of the aluminium atom. In these vanadium-aluminium compounds the mean $\mathrm{V}-\mathrm{Al}$ distance for aluminium atoms in contact with one vanadium atom is $2.80 \AA$, for those in contact with two vanadium atoms is $2.64 \AA$, and for those in contact with three it is $2 \cdot 66 \AA$. This shows that in these compounds at least the strongest interaction occurs when an aluminium atom is in contact with just two vanadium atoms.

One other feature worthy of note is the distance $2 \cdot 636 \AA$ between the $\mathrm{V}_{2}$ atoms; this is very similar to the distance ( $2 \cdot 648 \AA$ ) between the $\mathrm{V}_{2}$ atoms in $\beta$-VAl and is not significantly different from the closest distance of approach between atoms in pure vanadium which suggests that it exists here in much the same state as in the pure metal.

## 12. Summary

The structures of all the intermediate phases in the vanadium-aluminium system have now been determined. The three most rich in aluminium are intimately related to one another and have structures which are markedly different from that of $\mathrm{VAl}_{3}$. In all three structures the vanadium atoms are coordinated by twelve other atoms which lie at the vertices of nearly regular icosahedra. These icosahedra may interpenetrate one another so that one or two of the atoms in contact with a vanadium atom are themselves vanadium atoms; otherwise the icosahedra are linked together by shared faces or corners.

The vanadium-aluminium distances in the three compounds fall into two groups and those in one of the groups are all significantly shorter than the sum of the twelve coordinated radii. It is natural to associate these two groups with a strong and a weaker V -Al interaction. The fact that the strong vanadiumaluminium bonds are those associated with V-Al-V bond angles which are all near to $180^{\circ}$ suggests that the strong interaction in these compounds has more directional character than is usually associated with a purely metallic bond.

I wish to thank Prof. N. F. Mott and Dr W. H. Taylor for provision of facilities and for their interest and encouragement. I am most grateful to Dr Wilkes of the Mathematical Laboratory for the use of the EDSAC. I acknowledge my indebtedness to the Department of Scientific and Industrial Research for the award of a research fellowship during the tenure of which this work was done.

## References

Bailey, D. M., Carlson, O. N. \& Smith, J. F. (1958). Trans. Amer. Soc. Metals. Preprint 81.
Black, P. J. (1955). Acta Cryst. 8, 175.

Brown, P. J. (1957a). Dissertation for Ph.D. degree. University of Cambridge.
Brown, P. J. (1957b). Acta Cryst. 10, 133.
Brauer, G. (1943). Z. Elelitrochem. 49, 208.
Lipson, H. \& Cochran, W. (1953). The Determination of Crystal Structures, p. 308. London: Bell.

Raynor, G. V. (1949). Progress in Metal Physics, Vol. I, 1. Smith, J. F. \& Ray, A. E. (1957). Acta Cryst. 10, 169. Taylor, W. H. (1954). Acta Met. 2, 684.
Weisz, O., Cochran, W. \& Cole, W. F. (1948). Acta Cryst. 1, 83.

# Zur Kenntnis der Kristallstruktur von Lorandit, T1AsS $\mathbf{2}_{\mathbf{2}}$ 

Von Anna Zemann und J. Zemann<br>Mineralogisch-Kristallographisches Institut der Universität, Göttingen, Lotzestrasse 16-18, Deutschland

(Eingegangen am 20 April 1959)


#### Abstract

The crystal structure of lorandite, $\mathrm{TLAsS}_{2}$, has been solved in principle from ( $h 0 l$ ) and ( $h k 0$ ) X-raydata. The essential features are screwed $\mathrm{As}^{[3]} \mathrm{S}_{2}$-chains parallel [010], which are bound together by irregularly coordinated Tl -atoms. The final $R$-values are: $R_{[010]}=0 \cdot 10_{0} ; R_{[001]}=0 \cdot 17_{6}$.


## Einleitung

Während über Thioantimonite schon eine grössere Anzahl von Strukturuntersuchungen vorliegt, ist über Thioarsenite noch verhältnismässig wenig gearbeitet worden. An erster Stelle ist zu nennen die Strukturbestimmung von Arsenfahlerz, $(\mathrm{Cu}, \mathrm{Fe})_{12}\left(\mathrm{AsS}_{3}\right)_{4} \mathrm{~S}_{0-1}$ (Machatschki, 1928; Pauling \& Neumann, 1934). Für die $\mathrm{AsS}_{3}$-Gruppe wurde dabei eine trigonal-pyramidale Gestalt mit As-S $=2,21 \AA$ und $\Varangle \mathrm{S}-\mathrm{As}-\mathrm{S}=103^{\circ}$ gefunden. Diese $\mathrm{AsS}_{3}$-Gruppe ist seitdem noch in einigen anderen Thioarseniten gefunden worden.

Es ist zu erwarten, dass Thioarsenite mit einem $S$ :As-Verhältnis kleiner als $3: 1$ begrenzte oder unbegrenzte $\mathrm{As}_{x} \mathrm{~S}_{y}$-Verbände enthalten, in welchen $\mathrm{AsS}_{3}-$ Pyramiden über die Schwefel zu grösseren Einheiten verknüpft sind. Tatsächlich ist Auripigment, $\mathrm{As}_{2} \mathrm{~S}_{3}$, nach diesem Prinzip aufgebaut, wobei die $\mathrm{AsS}_{3}$-Gruppen über alle Schwefelatome zu Schichten ${ }_{\infty}^{2}\left[\mathrm{As}_{2}^{[3]} \mathrm{S}_{3}\right]$ verbunden sind (Ito, 1950). Realgar, $\mathrm{As}_{4} \mathrm{~S}_{4}$, nimmt eine gewisse Sonderstellung ein (Ito, Morimoto \& Sadanaga, 1952). Dieses Arsensulfid enthält [ $\mathrm{As}_{4} \mathrm{~S}_{4}$ ]-Moleküle, in welchen jedes As zwar pyramidal von drei nächsten Nachbarn umgeben ist; von diesen sind jedoch nur zwei Schwefel (As-S =2,35 $\AA$ ), ein Nachbar ist ein Arsen (As-As=2,59 $\AA$ ). Die vorliegende Arbeit soll einen Beitrag zur Kristallchemie der kondensierten Thioarsenite bilden, indem unseres Wissens erstmalig ein Thioarsenit vom Formeltyp $M e \mathrm{AsS}_{2}$ behandelt wird.

## Gitterkonstanten und Raumgruppe

Als Arbeitsmaterial standen mehrere Lorandit-Kristalle vom Fundort Allchar, Mazedonien, zur Verfügung. Die Zelldimensionen von Hofmann (1933a) konnten aus den Weissenberg- und Precession-Auf-
nahmen im wesentlichen bestätigt werden. Wir schlossen uns jedoch der Aufstellung nach 'Dana's System of Mineralogy' (1944) an. Die Gitterkonstanten der monoklinen Zelle sind:

$$
a=12,27, b=11,33, c=6,11 \AA ; \beta=104,2^{\circ} .
$$

Nach den systematischen Auslöschungen ( $h k 0$ nur mit $h=2 n, 0 k 0$ nur mit $k=2 n$ ) ist die Raumgruppe $P 2_{1} / a-C_{2 h}^{5}$. Die Elementarzelle enthält 8 Formeleinheiten $\mathrm{TlAsS}_{2}$.

## Gang der Strukturbestimmung

Als sehr schwierig erwies sich die Herstellung von Präparaten zum Sammeln quantitativer Intensitäten. Die ausgezeichnete Spaltbarkeit nach mehreren ( $h 0 l$ )Flächen gekoppelt mit einer sehr leichten plastischen Deformierbarkeit machten jedes Abschleifen unmöglich. Mangels gut geeigneter Ätzmittel führte auch die chemische Behandlung grösserer Spaltstücke nicht viel weiter. Die Daten wurden schliesslich von einem nach [010] gestreckten Spaltpräparat von ca. $20 \mu$ Durchmesser und ca. $60 \mu$ Länge gesammelt. Es wurden Serien von Aufnahmen mit multiplen Belichtungszeiten um [010] (Weissenberg-Äquatoraufnahmen, CuStrlg.) und [001] (Precession-Aufnahmen, Äquator,

Tabelle 1. Parameter

|  | Themart | Punktlage | $x$ | $y$ |
| :---: | :---: | :---: | :---: | :---: |
| Atom (1) | $4(g)$ | 0,051 | 0,313 | 0,160 |
| Tl (2) | $4(g)$ | 0,101 | 0,056 | 0,732 |
| $\mathrm{As}(1)$ | $4(g)$ | 0,190 | 0,820 | 0,237 |
| $\mathrm{As}(2)$ | $4(g)$ | 0,151 | 0,585 | 0,554 |
| S (1) | $4(g)$ | 0,125 | 0,320 | 0,750 |
| $\mathrm{~S}(2)$ | $4(g)$ | 0,150 | 0,580 | 0,200 |
| $\mathrm{~S}(3)$ | $4(g)$ | 0,125 | 0,790 | 0,510 |
| S (4) | $4(g)$ | 0,200 | 0,030 | 0,200 |

